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We examine in some detail the mean-field discrete lattice gases with repulsive interactions with the
purpose of establishing generalized Allen-Cahn equations to describe far-from-equilibrium order-
disorder dynamics in the same spirit as our previous study for the attractive case which led to a general-
ized Cahn-Hilliard equation. The starting point is the general master equation, and all analytic develop-
ments are done within the framework of mean-field theory, using the most natural averaging approxima-
tion. As applications we determine the analytic forms of the antiphase boundaries velocity for the
square and the simple cubic lattices, and we show that the conductivity always increases along these an-

tiphase boundaries.

PACS number(s): 05.50.+q, 64.60.Cn, 68.35.Fx, 64.60.My

I. INTRODUCTION

Lattice-gas models have found numerous applications
in the thermodynamics of alloys and nonstoichiometric
compounds [1]. Lattice gases with repulsive interactions
are of particular interest in studies of transport properties
of superionic conductors [2], intercalation processes in
rigid host structures [3], or surface diffusion with forma-
tion of ordered states [4].

When we want to study the dynamics of diffusion with
inhomogeneous concentration profiles in the presence of
an order-disorder transition [5], it turns out that the usu-
al phenomenological Allen-Cahn approach can no longer
be applied, as it is based upon linear assumptions of the
Onsager type. In this case, the effective diffusion
coefficient depends not only on the average local concen-
tration, but also on the concentration gradients, on the
local order parameter, and on the distribution of anti-
phase boundaries (see Fig. 1). In addition a notion of a
dynamical phase diagram must be introduced as the
phase diagram itself depends, among other things, on the
concentration gradient (finite gradient effect) [6]. If the
general behavior is relatively well known, there exists to
our knowledge no detailed mean-field study of the far-
from-equilibrium order-disorder dynamics on discrete
lattices, starting not from phenomenological assump-
tions, but directly from the master equation itself.

Therefore, this paper is specifically devoted to a gen-
eral mean-field approach of the far-from-equilibrium dy-
namics of lattice gases in the hopping regime with nearest
neighbor repulsive interaction, embedded in a thermal
bath fixing its temperature, with a special emphasis on its
relation with thermodynamics [7,8] and with area
preserving maps '[9]. Using an approach previously
developed by Martin in the one-dimensional attractive
case, and in any dimensions by Gouyet [10], we shall be
able to establish a generalized set of coupled non-
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phenomenological Allen-Cahn equations [11], not re-
stricted to the vicinity of the equilibrium state. As exam-
ples of applications of this approach, we shall calculate
the analytic form of the velocity of antiphase boundaries
(in the case of square and simple cubic lattices), and we
shall show that the conductivity increases in the anti-
phase boundaries.

To establish this set of coupled equations we must first
notice that in the case of nearest neighbor repulsive in-
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FIG. 1. Monte Carlo simulation of a diffusion process of
repulsive particles on a square lattice at a temperature smaller
than T,. The diffusion gradient is along the direction x, the
concentration decreasing with x. There exists a range of con-
centration where an ordering appears, developing two checker-
board substructures 4 and B (“colors”). In these ordered re-
gions many defects (particles or vacancies) are present, in par-
ticular, at the border of the domains. We have colored the B
sites in grey to show the domains: when black particles are on
sites 4 (A domain), the picture looks black and grey when the
black particles are on B sites (B domains), the picture looks
black and white. Black regions are regions with particle defects,
white and grey regions are regions with vacancy defects.
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teractions, most discrete lattices favor the appearance of
an order-disorder transition in which the lattice symme-
try is broken. The order discriminates different sublat-
tices which can be indexed by a “‘color.” For instance, in
the case of the square lattice, the order discriminates two
sublattices with colors 4 and B, which have a checker-
board structure. We shall concentrate here our attention
on the square lattice (with z =4 nearest neighbors) and on
the simple cubic lattice (z =6), but the approach can be
easily generalized to any lattice structure (the case of a
triangular lattice, with an application to intercalation in
TiSe, is in progress [12]). In the present case, the study
leads to sets of discrete coupled kinetic equations for the
concentrations of particles of the two colors 4 and B.
They are deduced from the master equation describing
the kinetics, in the same spirit as the case of attractive in-
teractions [10].

II. THE LATTICE-GAS MODEL

The general master equation for the kinetic evolution
of the average concentration p, = (., ) at site k can be

written

op

a—tk——</zk> 2(«} ({~})rj(1=ry) —cryj({})
Xllk(l—/lj)> ’ (1)

where »,=0,1 is the occupation number of site k and

¢« ;j({~}) is the jump probability operator from site i to
site j, which depends on the environment (given by the
configuration {n}). The definition of p, supposes a sam-
ple averaging in which the boundaries are (in average)
pinned at the same position by the noise (we do not adopt
the coarse graining averaging). For simplicity, the jumps
are supposed to be limited to nearest neighbor sites k+a’
of any site k. It is then convenient to introduce a current
operator &y ;4 ,({~}) along the link k—k +a, so that Eq.
(1) becomes

dp
a—:=_2<é‘k,k+a({ﬂ})) (2)

[where we have taken j=k+a in Eq. (1)].
current in the bond (i, j) is

Jii({p)

The average

)E((;IJ({/?})>

We are interested here in lattice gases with repulsive
interactions for which an order-disorder transition ap-
pears at some critical temperature 7,. As indicated
above, on the square and simple cubic lattice the symme-
try breaking is between two sublattices { 4} and {B} that
will be distinguished by their colors A and B (Fig. 1).
The occupation probabilities on these sublattices will be
identified with an upper index 4 or B, iE{ A4} and
J€ {B}; k will designate any site i or j. Equations (2) and
(3) then become
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As the designation of the colors 4 and B is arbitrary, it
is very convenient to consider simultaneously the two
color cases for each site k: this allows us to define on
each site k both concentrations pg and pf. It corre-
sponds to averaging at each time two extremely close
realizations of the ordering process. With these
definitions (that is, satisfying the symmetry between the
sublattices) for the master equation driving the two con-
centrations p{! and p£, the two concentrations will vary
smoothly on the whole lattice [13]. This remark is based
on the fact that in the absence of any chaotic regime two
concentrations p{! and p, , close at the initial time will
remain close at all time. This point is detailed in Appen-
dix A.

The choice of the averaging procedure for the mean-
field treatment can follow various physical or practical
(i.e., numerical) motivations. It will be chosen here to
lead to the usual thermodynamic approach (case I of Ref.
[10]). A convenient average takes the form

TP Up D =(a{"p1—pP)— (i pf(1—pi),

(6)

i being derived from c+jj({,}) with some arbitrariness,
taking into account the presence of the ;(1—r;) opera-
tor and the relation », =,j. We will turn this arbitrari-
ness to account, to choose /;; in agreement with the
well-established thermodynamics (see also Ref. [10]).

In most applications, the host potential in which the
hopping particles diffuse can be seen as an egg-box poten-
tial. The associated lattice is the lattice of the potential
minima. The bonds join nearest sites through a saddle
point. The jump probabilities cc+;({~2}) in a lattice gas
hopping model (Eyring absolute regime) are then essen-
tially a function of the energy difference, seen by the
jumping particle, between its initial well (site k) and the
saddle point (between k and k-+a). Here we consider
only a nearest neighbor interaction and the saddle point
is supposed at a fixed (zero) energy, hence not sensitive to
the occupation of the neighboring sites. The Hamiltoni-
an of the system of diffusing particles for a given
configuration {n} (in the hopping model, the particles
spend most of their time in the wells) is

ZEAB A/ZB—ZSA A_EEB B (7)

For a short range repulsive interaction g;j=¢ <0 with
{i,j} nearest neighbors and zero otherwise; in the follow-
ing we will choose siA=sf =u,, which corresponds to a



uniform lattice where all the sites are equivalent. With
these conditions, the standard jump operator at tempera-
ture 7, which leads to Arrhenius jump probabilities and
Boltzmann equilibrium distribution is

2 'ziB-Fa’

a'Fj—i

w{B({r})=w, exp --t

kT ’ (8a)

(wd =w8=w, on a uniform lattice, is a constant prefac-

tor, and the final site is considered empty in the expres-
sion of ¢-).

But the jump probability operator can be written in a
different way [10],

@{%({r})=wq exp s%nf exp

’

€ B
E”H-a'
kT o

(8b)

J

TEE((p))=w, {wxpf )L, (pEyy i (1—p ) —0,(p

where w,(p{!)=(exp—(e/kT)~{') is the contribution of
the occupation of site i to the jump probability. A simi-
lar expression is obtained for J34({p}).

As already noticed above, we will take the average in
the exponential for w,; this average leads to the usual
thermodynamic equilibrium

w,(p)=exp (10)

__& 4
kTp‘

To conveniently introduce the thermodynamic vari-
ables one can proceed as in Ref. [10], factorizing the
currents into a contribution S, symmetrical with respect
to the initial and final states, and a factor which is the
difference between a local function C invariant by the
transformations of the local point group of symmetry,
taken at the final j and initial i states,

JP({p)=—8{2(ct—c). (11)

This equation, together with the equations of evolution
of the local concentrations (4) and (5), constitute our gen-
eralized Allen-Cahn equations.

After identification one finds (up to an arbitrary con-
stant factor c,)

p iA

C{ =cow,(p{') (12a)

w,(pB ),
l“piAl:'[ Dita

AB __ Wo (l_plA)(l_p_’B)
Sij - A\s Bys ° (12b)
co w,(pj )w,(pj)

From (12a) it is possible to introduce what can be
identified to a local chemical potential on each site {i, 4 }
or {j,B}

u!=kTInC{# , pf=kTInC?, (13)
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which is equivalent to (8a), due to the presence in (1) of
the operator (1——/zj ): it is identical to (8a) when 7;=0,
and with zero contribution when »;=1; s =1 gives 48
where the arrival site of the jumping particle is excluded
from the sum. The interest of introducing the parameters

will appear later. It is for the moment arbitrary.

Mean-field approach

In the mean-field approximation, all the operators s,
in the expressions for the jump probabilities wy ,, are
replaced by their average concentrations p,. Depending
on the explicit form of the jump operators, different ap-
proximations can be obtained.

The general expression for the current can then be
written

O 7w P (1=pM |, 9)

f

defined via Egs. (10) and (12a) (¢, has been chosen here
such that y o= —pu,o when py,=1—p,) by

pil=pio=—se(p — 1) —ze(pi —1)—e I D,pi
2

(14a)

pe=pgo=—se(pg — 1) —ze(pd — 1) —e 3D,
<

pi
—pt

+kT In

(14b)

D, is a difference operator defined by
D,f(k)=f(k+a)—f(k) .

(The sum on a’ in (14) is then a discrete Laplacian opera-
tor [14].)

The parameter s allows one here to distinguish between
the usual chemical potential (s =0) when a particle is
taken out of its site without jumping to a neighboring
site, and a chemical potential taking into account the
empty final state of a jump (s =1). A self-energy contri-
bution must then be added to the chemical potential [see
Egs. (14a) and (14b)]. It seems possible to connect the
parameter s with the expression of ¢,(1,{n)), which ap-
pears in the density functional approach of the problem
[15]. The site approximation is clearly not sufficient to
determine s, and a contribution of the pair approximation
is certainly necessary. The choice s =0, is, however, a
choice which agrees at least with usual thermodynamics.

The quantities C* and C? are equivalent to absolute
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activities [16]. Expressions (14) derived directly from the
master Egs. (4) and (5), can also be obtained as an ex-
tremum of a free energy (F) with the constraint of a
fixed number of particles

<F> —Hi [zpl +Ep_]

giving at equilibrium

(F)=F,

>

€ €
- _EZPJBP;"FE _SEPJ _:u’ep] +kT[
a

£ £
- EZPiAPﬁLa '“SEPiA2 _.uePiA +kT[PiA lnPiA
a

Pinp? +(1—pf)In(1—p¥)]
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with a free energy

(15)

Remark. The symmetry between particles and holes, leading to relations (14), can be made visible by taking advan-

tage of the arbitrariness (choice of the zero of energies) of u, (or of ¢y): p,

um,

HF) _ 4_

{(F) _ g

=Hio— =HMjo -
aPiA ! apf !

Hi=

=kT Incy= —(z +5/2)e so that at equilibri-

(15a)

We now choose a situation with concentrations p! and p£ defined on each site k, and slowly varying in space. Intro-

ducing AF=2{{F)—F,} as a sum over all lattice sites k

€
—s—pi? —p.pid +kT[p{

AF _Ezpkpk+a+2 P

k,a

+2 >

The form allows for the introduction of local quantities
like the potential ¢, [Eq. (19) below]. Because (two)
infinitesimally close realizations are treated simultaneous-
ly, {F) in Eq. (15b) is now multiplied by the number of
sublattices (here 2). More generally, the number of in-
dependent concentrations on each site is equal to the
number of sublattices (here p ! and pJ).

From relation (13), the current [Eq. (11)] can be written
in a generalized Cahn-Hilliard form

JEp=—MEWl—pn? , (11
with a mobility M, given in first approximation [which
corresponds to a linearization of Eq. (11'), and a mobility
in the equilibrium state] by

Mi?B({P})EBSi?B\/CiACf . 11"

Far from equilibrium, the corrections due to the
nonhomogeneous chemical potential are implicitly in-
cluded in the mobility {using Egs. (11), (13), and (11');
see also Eq. (12¢) of Ref. [10]}.

We call Eq. (11'), together with Eq. (4) which gives the
evolution of the concentrations as a function of the local
currents [the explicit forms are written in Egs. (37) and
(40)], generalized Allen-Cahn equations for the following
reasons.

In the (phenomenological) Allen-Cahn equation (AC)

Ainpd +(1—p)In(1—pZ)]

—s=pP—p pE+kT[pf Inpf +(1—pf)In(1—pP)]

(15b)

[
the kinetic equation {Eq. (11), Ref. [11]} is
on _ —w SAF

ot on

where 7 is the order parameter and we could see [using
Eq. (20) below, and the relation n=(p 4—p?)/2] that it
gives the kinetic equation

on_ 8 ,
3t a 5m 2801%@,,77 s

which has the form of Eq. (12) of Ref. [11]. But in the
present study, (i) we obtain coupled equations which link
the order parameter 7 to the mean concentration p (see
below); (ii) the equations are no longer phenomenological
(though only a mean-field approximation of the master
equation).

As a consequence, the mobility M (a in [11]) contains
new terms, functions of the gradients, and curvatures of
the local concentrations (see Eq. (12¢) in Ref. [10] for the
simpler example of the generalized Cahn-Hilliard equa-
tion). As the only freedom during the derivation starting
from the master equation is the use of the mean field, we
expect the present equations to be valid far from equilib-
rium, because the master equation and its mean-field ap-



s1 GENERALIZED ALLEN-CAHN EQUATIONS TO DESCRIBE . .. 1699

proximation are valid far from equilibrium.

Indeed, we could have also derived continuous equa-
tions from our discrete expressions. The discrete equa-
tions, involving five sites along each coordinate, the con-
tinuous equations will contain fourth-order derivatives or
more exactly two-coupled second-order differential equa-
tions. This leads to complicated expressions without any
practical gains (we nevertheless used the continuous limit
to calculate the growth velocities). In addition, for nu-
merical solutions of continuous differential equations
needing discretization, this offers the best choice.

Before going into the details of the kinetic equations,
we need to recall the main results concerning the phase
diagram.

III. THE ORDER-DISORDER TRANSITION

It is very easy to deduce the phase diagram of the
order-disorder transition in the mean-field approximation
from the above expressions. We need it here as a basis
for the dynamics. This simple mean-field approximation
leads to a qualitatively correct phase diagram. A better
mean-field approach would consist in using the pair ap-
proximation such as the Kikuchi cluster variation
method [17], or the real space renormalization group [18]
(in calculating phase diagrams, the cluster variation
method may in practice be more accurate than real space
renormalization), while the best results can be obtained
via Monte Carlo methods [9]. But it is not the purpose
here to improve the results on statics: the use of the Sato
and Kikuchi path probability method (derived from the
cluster variation method) will be the subject of a work
presently in progress.

The mean-field phase diagram can be obtained by set-
ting the local currents to zero [Eq. (11)], in a homogene-
ous medium

pi=p"

and pf=p? for anyiand j,

and by laying down [using (11) and (13)] a fixed value to
the chemical potentials, associated to a given temperature
T and a fixed average concentration p

,uiAE,uJBE,u,m for any i and j .

It is more suitable to change the variables and to intro-
duce the local average concentration p, and the local or-
der parameter 7,

_pi+pi _pi—pi
Px= ) , 771(——2 . (16)
|
- 2
P =Peg(mT)=3E | (z=m) exp[ —2e(z —s)n/kT

. z=4;s=1;kT, /lel = 0.75;
Disorder
os8r __ ________
Te
0.6
T
0.4 04
_03
0.2 y
2 er/% i
///Vn 0

0 0.2

FIG. 2. Mean-field phase diagram. p is the local average
concentration and 7 the local order parameter (here, e=—1,
z=4,5s=1,kT,=0.75).

The phase diagram is defined starting from Eq. (14)
with p,=p=(p*+p?) /2 and n,=n=(p*—p?/2=0,
that is to say, by the equation

A

—sepd—zepP+kTIn lp —=—sep®—zep”
-Pp
B
+kTh—L2— . (17a)
1=p

This equation is conveniently solved by considering the
function

flw)=(z =s)e(u =)+ kT In- LI (17b)
—u

related to the chemical potentials of homogeneous con-

centrations by

pt=f(ph—2ze(p—1), (17¢)

uB=f(pg)—2ze(p —1), (17d)
so that (17a) becomes

fpH=rfp?. (17e)

A mean field phase diagram is shown in Fig. 2. This
approximation is qualitatively comparable with the exact
phase diagram. The diagram is symmetrical with respect
to p=41; the critical mean-field temperature is
kT, = —(z —s)e/4.

At equilibrium p is related to 1 by the equation [solv-
ing (17e)]

2 172
1
I
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associated with a well-defined chemical potential,

B [Peq(1, T),M] (1, [Peq] is shown in Fig. 4).

IV. DOMAIN BOUNDARIES OF METASTABLE STATES

There exist metastable states associated with fixed uni-
form values of the chemical potential, in which the two-
ordered phases are coexisting and separated by domain
boundaries. These metastable states must have planar in-
terfaces [11].

J

b =0p{,pE)=¢o—zep{pt

£
~Hepi —s5 P +KTIpy

We first rewrite the free energy in its usual form of a
(discrete) sum of a “¢*’ potential (we consider here its
“exact” expression with the logarithms of the concentra-
tions), and a quadratic term in the (discrete) gradient.
Equation (15b) becomes

AF=3 ¢k+§2($apf)($ap{f)
k a

with

Inpd +(1—pH)In(1—p)]

—,uepf—sgpfz—i-kT[pflnpf-l-(l—pf)ln(l—pf)} . (19)
f
In the absence of an order-disorder transition the sublat- o o
tices A4 and B are not differentiated (n=0, and p=p¥) u=—(z+s)elp, —3)+tkTln 1—,0
and (19) reduces to Eq. (16) of Ref. [10], except a com- Pm
mon factor of two (the number of sublattices). Very gen- =f(po)—2ze(pd —1). (22)

erally the chemical potentials can be written from Egs.
(14), (15), and (19)

4_ OAF _ 93¢y
Hx = apl? - 3 {_Egi)a’pf ,
(20)
p_ OAF _ O¢y

The metastable and stable static states are then defined by
the equations

P =P m) =p =ppy, —m)=p for all k . @D

The chemical potential u can be associated to a uniform
concentration p? (larger than the average concentration
po) for which the order parameter 7 is taken equal to
zero. Using (14a) and (14b) together with p =pZ=p?),

it is such that
J

This concentration p2 —p, gives the amount of defects
present in the antiphase boundaries with a good accura-
cy. We shall detail this point below.

On the other hand, quenching the system initially in
equilibrium at high temperature with a homogeneous
concentration po( T, >>T,) to a temperature T (T <T,)
leads to an out-of-equilibrium situation where the chemi-
cal potential is at the beginning p, given by

po= —(z +s)e(po—

1)+kT1n (23)

Po
1—py °
This will be taken below as the initial state of the dynami-
cal evolution. Figure 3 shows a construction using Egs.
(17b), (17¢), and (17d) which gives, for a set (g, T,p,), the
order parameter 7, the chemical potential u, and the con-
centration p?. Figure 4 shows u and p, as a function of
the average concentration p,.

To study the evolution from this initial state, it is more

convenient to work with the variables {p,7} defined by
(16):

S =2eP(py, M) =Po—21.Px —(z +5)epi +(z —s)en?
+kT {(py+mi) In(py + 1)+ (py —n3) In(py — 1)
+(1=py—m) In(1—p, =)+ (1—p,+7 ) In(1—p, +n,)} . (19
[
The surface ® is symmetrical with respect to the plane A A+pul

7n=0. The choice (15a) for u, gives ® also symmetrical z.i/)apk o 28

with respect to p =1 (particle-hole symmetry), while Px & 24)

¢o= —(z +5)e/4+2kT In2 fixes the potential such that ap puid—ut

®(1,0)=0. 2D " g T e

From (14a), (14b), and (19’) it is possible to deduce the
area-preserving mapping defining the interfaces at equi-
librium associated with a given chemical potential . In
general,

The terms on the left-hand sides of (24) are discrete La-
placian functions [14]. It is convenient here to introduce
a “grand potential” WV defined by
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f 1422 2(p—1/2) !

n

Aoz . 0.4

e
(<)

FIG. 3. Simple graphical construction at equilibrium of the
order parameter 7, of the chemical potential y,,, and of the ap-
proximate interface concentration pJ, for a given mean concen-
tration p, and a fixed temperature T: u“ and u?, 4 and f2, p¢'
and p2 are, respectively, the chemical potentials, the free ener-
gy, and the concentrations in the two ordered phases 4 and B
corresponding to an average concentration p,. The relation
f*8—2e(p —1) comes from Eq. (22) and gives p.

)
‘P(pkmk,u,8m=<l>(pk,nk)—%(pk—%)——E’ink. (25)
V¥ is then such that

A_ B

K2 M — i —op

+3D _—,
877k ? allk™ 2e
A2 (26)

Mg — 2p

@ -
apk § aPk = 2e

In quasistatic situations, the chemical potential u and the
unbalance du between sublattices 4 and B will be chosen
such that

(26a)

We shall first show that in one-dimensional profiles, the
domains can in principle be obtained using an area-
preserving map, as in the case of spinodal decomposition
[9]. When we consider a one-dimensional equilibrium

ar
Hm

z=4; s=1; kT/lel =0.
-4t J

FIG. 4. Variation of the chemical potential y,,, as a function
of py. The curve =0 corresponds to the chemical potential
(o) in the absence of ordering transition (undercooling).

problem along a direction (with abscissa k), in which the
other (d —1) directions are translational invariants (pla-
nar antiphase boundaries), the discrete Laplacian func-
tions in (26) reduce to discrete second derivatives in k

oV
Pk+1 20k TP 1= +a— )
Pk
(27a)
_ v
Mi+12M T 1= — an,
with the equilibrium condition
pl=pul=p, Su=0. (27b)

Equations (27a) present some similarities with an equa-
tion of motion in a potential ¥ (fundamental law of the
dynamics with on the left-hand side discrete second
derivatives with respect to k assimilated to a time); how-
ever, the right-hand sides are not the components of a
gradient, due to the different signs. Comparison with a
motion in the {p,,n;} space can nevertheless help. A
surface W is represented in Fig. 5 (for a value of T smaller
than T,). The surface W is invariant by the changes
n— —mn,and {u— —u,p—1—p}.

As in [9] the ordered domains can be obtained using an
area-preserving map

v
Pr+1— 2Pk+’az_4k ’
9k +1= Pk> (270)
_ oW ¢
77k+1_277k_577_k—_)(k )
Xk+1= Mk -

11,1 a7
(e
i

l’u”llll’/l/ 7% ':,"
,|.. il Il 1
Wi

l\‘ Wl

l ll' 'I, 'l, 0,' = } .66

“ll Uil """"3% FE -
\Q' "\;"" ""'

\ ) (

p 0 2 z=4
' s=0
T=07
R= 0.7
0.4
FIG. 5. “Grand potential surface” W(p,7) at a temperature
smaller than T, (e=—1, z=4, s =0, p;=0.7, kT =0.7; here

kT,.=1). The points 4 and B are associated with the two equi-
librium ordered structures. O corresponds to the unstable (uni-
form) disordered structure.
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A. Small amplitude metastable states

Suppose that we quench a system with concentration
Po, from high temperature to a T <T,: The system
reaches an unstable state with uniform chemical potential
o [given by (23)]. Let us first show that, except for very
particular cases, it will never encounter small amplitude
metastable states around the point {p,,7=0}. For a
given u =y, the uniform solutions of (26) correspond to

oV _ oY _

0, (28)
dp Oy

the solutions of which are

M =0, px=po, (28a)

corresponding to the thermodynamically unstable point,
and

nkEneq(.u’O) s Pk Epeq(:u'O) ’ (28b)

related to Egs. (17¢) and (18) corresponding to the ther-
modynamically stable points.

W can then be expanded around the ‘“‘equilibrium” po-
sition {py,71=0} of the equivalent dynamical problem
(26a) (we set e= —1 in the following):

+
W(po+x,p)="2 > S (po— 12 —kT In(1—pq)
z+s kT 2
2 2p0(1—p0)
z—s kT 2
- +.... 29

For this small amplitude approximation, the right-hand
side of Eq. (26a) can be associated with a virtual force
derived from the parabolic potential in Eq. (29). In this
limit case exact solutions of (26a) can be obtained. They
are of the form [19]

pr=aAd*+BA~*, n,=yB¥+8BF, (30)

A and B being solutions of

A%2—2(1—a)A +1=0, (30a)
B2—2(1—b)B +1=0, (30b)
where
o= z+s kT
2 2p0(1—p0)
b= zZ—s kT

2 N 2p0(1—p0)

It is shown in Appendix B that the solutions of (30a) and
(30b) do not allow small amplitude equilibrium states, ex-
cept for very particular systems.

B. Large amplitude metastable states with planar interfaces

We have no general analytic solutions for the concen-
tration profiles. Metastable states (metastable because an
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infinitesimal density fluctuation could be sufficient to de-
stabilize the system) correspond to given values of the
chemical potential u, and a fixed average concentration
Po-

Let us consider first planar interfaces that are one-
dimensional structures varying along the direction k (the
d —1 other directions being translational invariant). The
profiles in {p,,n,} are defined by the discrete Egs. (27a)
or by the map (27c). However, due to the instability of
the recursion, it is in practice not possible to simply
iterate these equations, starting from given initial condi-
tions {py,7m} and {p,7m;}. One direct way consists in
simulating the master Eq. (4), starting for instance from a
one-dimensional periodic concentration profile. The local
chemical potentials rapidly relax towards a uniform
value. The profile of p/! of such a metastable state is
represented in Fig. 6. It corresponds to a trajectory
along AOB on the ¥ surface (Fig. 5). The trajectory of
the {py, 7, } follows the curve u=p,;=const derived from
Egs. (14a) and (14b) or Egs. (26) and (26a),

0.9

0.8

. . (a)

(b)

FIG. 6. (a) Equilibrium profile of an A4-B strip (the B domain
is for 25 <k =75). Periodic boundary conditions are imposed
along k. (b) p(n) diagram of the above profile (e=—1; z =4;
s =0; pp=0.7; kT =0.7). The ¥ surface, with a chemical po-
tential equal to 4;=1.610. .. slightly smaller than u,, is super-
imposed (shown by its level lines). The accumulation points are
close to 4 and B, and on the dashed lines representing the
homogeneous equilibrium curves p..(17). The middle O of the
interfaces corresponds to =0 and p =p,, =0.73. The line
p=po=0.7, is a center of masses for concentrations of the
points on the profile. The solid line corresponds to the curve
uip,n)=1.610... [Egs. (14), (21), and (23)], and is indistinct
from a parabolic fit.
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A4, B
Bt
:.i?_ﬁ:_.(z +5)e(p— 1)

2 2
kT Pk Mk
—e3Dpt+t—In——m—F— .
ol 2 (I=pP—m
(31a)

The second Equation in (26a) gives the second constraint
for the equilibrium profile,

A_ B
Bie — 1
du= —ki-—k =(z —s)en, +e>D,n
<

y (px )1 —py +7y)
+E In Px Tk Px Tk —0 .
2 (pe= ) —p— M)

(31b)

In the case of a single kink at equilibrium in an infinite
medium, corresponding to u,, =u(py,n), A and B are ac-
cumulation points and O corresponds to the point
{Pm,0}.

In the vicinity of O, (31b) gives a relation between the
discrete Laplacian and the order parameter, and we
define the wave vector g by
kT

eDm(1—py)
(32)

—2¢*= lim —l—zi)a,nkZ —(z—s)—
nkﬁO ’T]k a’

In the absence of an exact solution for 717, we can consider
a hyperbolic tangent form as a good approximation for
the single kink profile. 7, can then be written

nkzneq(po)tanh(qk) » (33)

with g given by (32).

The width of the interface varies like q ~
[Eq. (32)] like [T—T,(T)] "% with T,(T)
=—¢e(z —s)p,,(TN[1—p,,(T)] which, when p,=p, =1,
is equal to T,. This is the expected behavior for a noncon-
served order parameter [11].

Another convenient approximation concerns the para-
bolic fit p () of (31a) shown in Fig. 6. For a single kink
profile, the parabola AOB has the expression
2

U that is,

N/ —
neq(pO)

P =Pm— (P —Po) (34)

To determine p,,, related to the amount of defects in the
antiphase boundary, we can use Eq. (31a) around O. As
the discrete Laplacian of p remains always a small quanti-
ty, p,, is given in first approximation by Eq. (22). To im-
prove this result, we calculate 32,p, from Eq. (31a) and
from Egs. (34) and (35). This leads to an implicit equa-
tion between p,,, po, and p2 via Eq. (22). We find

P =pm t8p,,
with
(p2 —po)k (TS —T)
dp, =
2[kT —espl(1—p2)]

’ (35)

0.9 {z=4,s=0, po=0.7}

0.8 KT

FIG. 7. Graphs of the order parameter 77, and of the average
concentration p,, as a function of temperature (e=—1, z =4,
s =0, po=0.7). (p, —Po) gives the excess of defects in the anti-
phase boundaries, compared to the homogeneous region. The
lower curve gives the order zero approximation pJ, [Eq. (22)],
the upper curve gives a first-order correction [Eq. (35)].

(a)

(b)

A

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 M

FIG. 8. (a) Equilibrium profile of an A-B periodic strip (each
domain has a width of 8 lattice spacings). (b) Same diagram as
in Fig. 6. But now there exists no wide enough uniform
domains with an equilibrium concentration. As a consequence
the parabolas do not go through the equilibrium points 4, O,
and B associated with the chemical potential u,, (or u;, as in
Fig. 6). Here the chemical potential is u,=1.534... corre-
sponding to an ordered homogeneous domain with concentra-
tion p, =0.676, and the points 4, and B,.
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where
kTS = —¢e(z —s)p(T)[1—p2(T)] .

The correction to p2 is of order 0.002, in the example of
Fig. 6 (p,=0.7, p2 =0.7293, 8p,, =0.0019). The general
behavior of p,, as a function of T is shown in Fig. 7 in the
case p,=0.7. The correction (35) is valid if T is not too
small.

In fact, in the case of periodic profiles, as in Fig. 6,
where periodic boundary conditions are imposed,
u=p,=~1.610 [while u,,(p,)=1.622] and the two phases
have a concentration slightly smaller than p,. A metasta-
ble state with a shorter wavelength is shown in Fig. 8, for
which p=p,=~1.535 is even smaller. But Fig. 9 shows a
quasistatic state for which the u;=1.610 is imposed by
the greater domains, and is then very similar to the case
of Fig. 6. However, this state very slowly evolves and the
surface of the smaller domain decreases with time (practi-
cally linearly). The solid “parabolic” curves in Figs. 6, 8,
and 9 are the curves u(p,7)=const.

As we have already noticed, an excess of defects is
present in the antiphase boundary (excess of particles:
DPm >Do When po>1L, or excess of vacancies: p, <pg

0.8

0.7 .o (a)

0.6

20 40 e 60 80 100

0.74 % §

(b)

Z=2

0.1 0.2 0.3 n

/

'
o
w
i
°
N
'
°
W
°

FIG. 9. (a) Equilibrium profile of an A4-B asymmetric strip
(the B domain is for 45 <k <57). (b) Same diagram as in Figs. 6
and 8. Here the narrow B domain has a width similar to the B
domains in Fig. 8, but the 4 domain is wide enough to be close
to the equilibrium homogeneous situation. The diagram is then
very similar to Fig. 6(b) (except for the dissymmetry between 4
and B), and has a chemical potential £3;=1.610---. The state
is in fact quasistatic, and slowly evolves towards a homogeneous
A phase.

when py,<1). This is a common phenomenon which
directly appears in this mean-field approach.

The excess free energy ¥ per unit area for a planar in-
terface can also be easily determined. From (19) we ob-
tain

== S Dy )~ (Depy ] - (36)

a” k a

In this expression the discrete gradient of p appears to
be a negligible quantity, and (36) takes then the usual
form of the continuous limit of an integration of the
square of the gradient of order parameter normal to the
interface.

V. THE ORDER-DISORDER DYNAMICS

We have now all the elements to examine the dynamics
of this order-disorder transition after a quench of a high
temperature disordered state at a concentration p,.
These dynamics have been simulated using the mean-field
equations established above.

The mean concentration {p, ) over the whole lattice is
a conserved quantity. From Eqgs. (4) and (11), we see that
the equation of evolution of the mean concentration p, is

Ipy

=SSPl —chsiicf—chy, 6
j

so that

3
" [Epk ]=—2{s§3(c?—cf)+s2;‘(c;*—CE)}
k k,j

I

0. (38)

In the case of a centrosymmetric lattice with nearest
neighbor jumps, the evolution equation of p, can even be
written as a discrete divergence of a current

Py

Tar _Eﬂa']lffa,k . (39)

On the contrary, the order parameter 7, is a noncon-
served quantity:
0N

e — 3 (s@CE-c—sEC—ch) W)
j

does not possess any sum rule.

A. Evolution of a circular (or spherical) domain

The surface of a domain is expected in the case of a
nonconserved order parameter to evolves at a velocity
proportional to the local curvature [11],

a2

v >R (41)

Starting from Egs. (38) and (40), it is possible to calcu-
late the evolution of a curved interface. We start from a
spherical domain [and a continuous approximation of
(38) and (40)] and look at the evolution dp(R,?)/dt and
d1(R,t)/9t. The velocity v of the interface is obtained
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for profile  in a moving frame (n(R,t)=n(R +vt)),
looking to the points {7(R,#)=0, %" (R,t)=0, p'(R)=0}
of the interface. A remarkable fact is that the problem is
independent on the evolution Eq. (37) of 9dp(R,t)/at,
hence of the explicit values of p.

We have made the calculation in two cases, the square

(z=4) and the simple cubic lattice (z =6). We obtain
expressions of the form (41), that is,
—(4—s)(e/kT)p N € 1
=4 O (1+(12—s5)—p (1— —
UV =4wpe (12—s) kT‘DO( Po) R
when z =4, (42a)
and
—(6—s)e/kT)p £
v=_8wqe 0 1+(18—s)ﬁp0(1—p0) —
when z=6 . (42b)

The above velocities are always negative as long as the set
{Po,kT} is inside the ordered region: The radius of cir-
cular or spherical domains then decreases like the square
root of time [11]

R(t)=aV ty—1t . (43)

This behavior is also well verified numerically: the
evolution of R is shown in Fig. 10. A discrepancy only
appears when the radius becomes of order of the width of
the interface. It can be also noticed that the prefactors of
1/R in (42a) and (42b) contain two terms: only the
second, with the general form, (a/kT)py(1
—po)exp{ —py(z —s)e/kT} is proportional to the mobil-
ity {see Eq. (19) in [11]}, as is expected in a phenomeno-
logical approach (the mobility is easily obtained in first
approximation using Eq. (11”) together with (12a) and
(12b) and the constraint p =pZ=p;). When the two
terms are taken into account, it can be observed that the

14

o N B O ©® O

10 20 30 40 50

FIG. 10. Time evolution of the radius of a spherical droplet.
We find numerically ¢ =14.86—0.004 82R?. The usual law of
evolution in V'7 of droplets in the case of a nonconserved order
parameter is obtained. The analytical approximation (42a)
would give a coefficient of R? equal to —0.0035.

velocity reaches the value zero inside the disordered re-
gion (where v has no meaning) and remains negative on
the phase transition curve [defined by
kT =—(z —s)epy(1—py)]-

B. Global evolution of a quenched sample

As an example we have followed the evolution with
time of a (relatively small) sample of size 100X 100, start-
ing at ¢t =0 from a homogeneous high temperature disor-
dered distribution with a concentration p,. At ¢t =0, a
small noise (—107° <85 <107°) is added, via the order
parameter, to this uniform concentration. At ¢ >0, most
of the sample goes far from the unstable point so that the
effect of a noise can be neglected.

The sequence in Fig. 11 shows the evolution of the sys-
tem in the representation space {p,,”,}. At time ¢t =0,
the various sites of the sample are all located in the close
vicinity of the point {p,,0}, and their chemical potential
is pg [Eq. (23)]. After the quench the system evolves at
the beginning exponentially. At ¢z =1 (arbitrary units of
time), parabolic structures indicate that local chemical
potential equilibrium has been attained, with incipient
phase and boundaries. At t =2, large regions of the sam-
ple have reached their equilibrium, corresponding to sites
on the equilibrium curve p.(7,T) [Eq. (18)]. They are
separated by antiphase domains, but the width of the par-
abolic distribution shows that the chemical potential is
not homogeneous or equivalently that, on a mesoscopic
scale, the concentration is not homogeneous. The values
of the chemical potential can be obtained from Eq. (22),
where the distribution of p,, corresponds to n=0. At
t =7, the amount of sites in an equilibrium situation has
increased [Fig. 12 shows the general distribution of
n(x,y) and p (x,y)]. The points above the main parabola
which are located in the 7 <0 region correspond to the
disappearance of 4 domains (they form incomplete pa-
rabolas). Then the sample becomes more and more homo-
geneous (¢ =25). At t =50, the distribution presents an
asymmetric structure: most of the particles are now on B
domains and the asymmetry of the parabola with respect
to m can be associated with linear gradients of chemical
potential in the 7 space. This behavior is clearly visible
in Fig. 13. At ¢t =64, only one ordered phase (B) remains
in the 100X 100 sample, but if  has reached its equilibri-
um everywhere the concentration is still not at its equilib-
rium value p,, and p varies in the range 0.698=p
<0.706. Long distance diffusion of matter is now neces-
sary to reach the final equilibrium.

C. Conductivity in the ordered regions
and in the antiphase boundaries

The conductivity o can be easily determined from the
linear response to an electric field 8E. We find from
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0.69995

0.6999

0.69985

= 0.6998 ¢

t=25 p

t=50 p t=64 p
Peq(M) o 73
Peq(M) o s
0.71
n n
0.1 0 -0.2 -0.1 0.1 0.2

0.69 0.69

0.68" (e) 0.68 (f)

FIG. 11. These figures show the evolution of the distribution of values {7,p} in a sample of size 100X 100. At ¢ =0, the system is
quenched from a uniform disordered configuration at large temperature to a 7' < T,.. The time unit is arbitrary. The system starts
from the configuration {p =p,,7=0]}, to which a small noise has been added (|87 <107°). (a) At ¢t =1, some parabolic structures
are already visible (existence of small regions of homogeneous chemical potential). During this initial period the evolution is ex-
ponential. (b) At r =2, the points are distributed on various parabolas, and regions of equilibrium {7.,,p.,} have been reached (the
chemical potential 4 =const, depending only on the mesoscopic average concentrations). (c), (d), and (e) The domain boundaries be-
come better and better defined. The width of the parabola distribution becomes narrower. In (c), we see a set of points with a larger
concentration, located only in the upper-left quadrant. They correspond to a disappearing A domain (centered around x =100,
y =80 in Fig. 12). The main distribution follows roughly a parabola (solid line). The curve p.,(7) is a place of accumulation of or-
dered regions with a 0.685 <p <0.71. In (e), we see that most of the points are on B domains; in addition the parabola is asymmetric,
indicating the existence of a small gradient of chemical potential between 4 domains and B domains. (f) The interfaces have all
disappeared, and only phase B remains. All the points are now on the curve p.(77). However, the concentration is not yet homo-
geneous. Gradients of defects are present in the system. Their evolution is now only driven by diffusion.
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(b)

FIG. 12. (a) Surface 7(x,y,t) at time ¢t =7 [Fig. 11(c)]. (b)
Surface p(x,y,t) for the same configuration, showing the
enhancement of defects in the interfaces.

FIG. 13. Distribution of chemical potential i as a function of
m, at time ¢ =50, when the relation p (1) follows an asymmetric
parabola [Fig. 11(e)]. It shows clearly linear dependencies of
u(n) through the antiphase boundary. The “parabola” p(7)
given by Eq. (31a) now contains a linear term in 7 explaining
the asymmetry of the parabola.

1707
o=51/SE
o =—=SgrC+Ch) . (44)

In Fig. 14, we see that the presence of defects (particles or
vacancies) in the antiphase boundaries raises the conduc-
tivity: The numerical simulation has been performed in a
layer of domains A and B as in Fig. 6. Its conductivity
0 4B=g24 shows an increase from 0.021 to 0.035 in the
direction parallel to the interfaces, and in the direction
perpendicular to the interfaces, o 4® shows an increase
from 0.021 to 0.023 if gradp 4 <0 and from 0.021 to 0.053
gradp 4>0 (and the reverse for o24). In the direction
normal to the interface a contribution of the gradient of
concentrations (p # or p®) must be added to o 48 (or o24).
The average conductivity is indeed given by o=(o 48
+oB4)/2.

In addition we can see that the conductivity has

on®
0.034
0.032 Kk
20 40 60 80 100
0.028
0.026
0.024 (a)
0.022
chB
0.05
0.045
0.04
0.035
0.03 (b)
0.025
N K
20 40 60 80 100
FIG. 14. (a) Conductivity c=c®=0f* in the direction

parallel to the interface, determined in the case of the A4-B strip
of Fig. 6. (b) Conductivity o #® in the direction normal to the
interface; the conductivity from sublattice 4 to sublattice B
contains an odd contribution in gradp 4 but

o= 4o 1) 2.
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(within 1% in the numerical example) in the direction
parallel to the interface, the general form

0 +a=00— T p(1—py) (45a)

which leads in the presence of a variation &p of the de-
fects in the interfaces, to an enhancement of the conduc-
tivity,

So=~o(2p,—1)6p . (45b)

This effect of negative resistance at interfaces has been
also recently noticed by Maugis and Martin [20]. The
mean conductivity can be estimated, at least in first ap-
proximation: If we consider the conductivity in the inter-
face (7=0) for a system with a homogeneous concen-
tration p,, then (44) is two times the average mobility
calculated from (11”): o *B=2wgexp[ —py(z —s)e/

kT]pO( 1 ‘—po).

VI. CONCLUSION

To summarize, we have shown that starting from the
master equation describing the evolution of a repulsive
particle (here nearest neighbor interaction and nearest
neighbor jumps), the most natural mean-field approxima-
tion leads to Allen-Cahns type equations. These Allen-
Cahn equations are generalized equations in the sense
that, far from equilibrium, they are as valid as the mean-
field approximation is. In the present case (square and
simple cubic lattices) we have found a set of two coupled
equations linking the order parameter and the mean local
concentration. It is remarkable that in these equations it
is possible to identify chemical potentials which could be
deduced from the natural inhomogeneous free energy
function. The calculations have been greatly simplified
by the use of the simultaneous evolution of the two possi-
ble sublattice histories, allowing one to define local pa-
rameters on the same site. We have used these equations
to study some interesting physical features: the evolution
of a curved antiphase boundary, the concentration of de-
fects in the boundaries, and the variation of the conduc-
tivity inside and outside a boundary, showing an enlarge-
ment of the conductivity in the interfaces, a result which
has recently been observed [20]. We have examined the
global evolution of a 100X 100 sample, showing the vari-
ous time scales of the evolution, appearance of domains,
evolution of these domains, presence of quasiconstant
gradients of chemical potentials through the interfaces,
and final evolution by diffusion of the inhomogeneities of
concentration. As in the case of attractive interaction, the
method allows us to calculate explicit expressions for the
mobility, the interface velocity, the conductivity (in the
limit of validity of mean field). The interest of the ap-
proach is its wide generality of application: it is clear for
instance that it also applies to master equations with
longer ranges of interactions and to more complicated
lattice structures.

Note added. While this paper was in revision, Profes-
sor Georges Martin transmitted to me two manuscripts
[21,22] which deal with the same subject, using a slightly
different approach but leading to similar results.
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APPENDIX A

To avoid complicated expressions involving sublattices
A and B, for which the concentration is not taken on the
same site, it appears very useful to have quantities be-
longing to different colors but taken on the same sites.
To understand why this is possible, it is necessary to ex-
amine in more detail the evolutions of the concentrations.

Let us consider two independent (one-dimensional to
simplify) systems with initial conditions defined following
Fig. 15(a). At time t =0, the black dot configuration is a
quasihomogeneous configuration with

pi'=pot+dn, pE=po—8m,,...,

where 87, are very small fluctuations (this is for instance
a high temperature disordered configuration, quenched
below T, at t =0). This configuration is a realistic state
which will evolve with time with the creation of ordered
regions of colors 4 and B. Now together with this
configuration we consider the white dot configuration
with

t=0 (a)
$ ’A Q QA p0_8n4 A K
po{ S Oy PO+5T13%—_8__~—_O~_>B B
1 2 4 5 6

FIG. 15. Definition of sublattice variables on each lattice site
k. (a) Initial conditions: At time ¢ =0, the system consists in a
high temperature disordered state, with an average concentra-
tion p, to which very small fluctuations {87, } are superimposed
on each site. Two realizations are shown, the first with concen-
trations {p 4,p®} indicated by black dots, the second with con-
centrations {p’4,p’?} indicated by white dots and symmetrical
(at t=0) of the first with respect to p,. (b) After a quench
(T <T,) at t =0, the two realizations evolve with time and are
such that the sets {p{',p%,p#, -} and {p?,p3*.p%, -}
remain smooth functions of the position k.
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pi'*=po—dn1, p)’P=po+tém,, ...,
which is obtained from the black configuration, by chang-
ing 8m; into —&m;; and in addition we identify the p’4
with a p? and p'8 with a p 4:

pt=po—08n, pi=py+én,,

We now claim that when the time increases, while the
two configurations evolve completely independently, the
sequences

B

PlA’PZA ’PSA »- .. and Pllg’pgrp3 P

are smooth functions of the position k as shown in Fig.
15(b). In the example of the figure, the black
configuration is of “color” A for k <4 (p4<p®) and of
color B for k = 5.

The reason for this claim comes from the evolution of
Egs. (37) and (40). One can verify that their right-hand
side is even in the order parameter 7, so that the solu-
tions for the black and white configurations are of the
form

Pé=pitm 80k . PE=pr— M — 8y .

Both solutions p;, and 7, of Egs. (37) and (40) being
smooth in the coordinate k (the noise 87 and 87} being
negligible), this is also true for p 4 and p2. This is not a
rigorous mathematical proof of the assertion of this ap-
pendix, of course. Nevertheless each step of our argu-
ments is reasonable, and the conclusions are confirmed by
numerical results.

APPENDIX B

Existence of ordered regions imposes b =0, or

kT <(z —s)po(1—py) kT, =(z —5)/4 . (B1)

1. Solutions for p;

(i) If 0<a <2, we can set (1—a)=cos¢, in (30a); this
leads to oscillatory solutions for p;:
Pr=Pot2acosk¢ , (Bla)

which is possible if

kT <(4—z —s)po(1—po) =kT,=(4—z —s)/4 .

(ii) If 2<a, we can set (1—a)=coshu, in (30a); this
leads to exponential solutions for p; :

Dr =Do taexpku +Bexp(—ku) , (B1b)

which is possible if
(4—z —3$)po(1—po) kT =(z —s)poy(1—pg) .

This is the case for the square or simple cubic lattices (for
which T, <T, or z >2). When the lattice is infinite, k
takes all values between — o and + o0, no small ampli-
tude solutions exist except when a=[=0, and then,

Px=DPo -

Small amplitude variations of p, and 7, are possible on
chains (z =2) or in square lattices when s =1, and also
for finite size systems where k and then (26a) remain
bounded.

2. Solutions for 7,

Notice first that b is always positive (ordered region).
(i) If b <2, we can set (1—>b)=cos0, in (30b); this leads
to oscillatory solutions for 7 :
M, =2y coskO , (B2a)

which is possible if
(z =5 —4)po(1—po) kT =(z —s)po(1—py) .

(ii) If 2=<b, we can set (1—b)=coshv, in (30b); this
leads to exponential solutions for 7;:

N, =7y expkv +8exp—kv , (B2b)
which is possible if

kT <(z—s—4)py(1—p,y) .
Again in this case (low temperature region only present

in z >4 lattices) no small amplitude solutions exists (ex-
istence of abrupt interfaces).

[1] D. de Fontaine, in Solid State Physics, edited by H. Ehren-
reich, F. Seitz, and D. Turnbull (Academic, New York,
1979), Vol. 34, p. 73.

[2] W. Dieterich, J. Stat. Phys. 39, 583 (1985), and references
therein; Proceedings of the Sixth International Conference
on Solid State Ionics, Garmisch, 1987 [Solid State Ionics
28-30 (1988)]; Proceedings of the Eleventh International
Symposium on the Reactivity of Solids, Princeton, 1988
[Solid State Ionics 32 and 33 (1989)].

[3] A. J. Berlinsky, W. G. Unruh, W. R. McKinnon, and R.
R. Haering, Solid State Commun. 31, 135 (1979); Y. Cha-
bre and P. Deniard, in Chemical Physics of Intercalation,

Vol. 172 of NATO Advanced Study Institute, Series B:
Physics, edited by A. P. Legrand and S. Flandrais (Ple-
num, New York, 1987), p. 395.

[4] A. G. Naumovets (unpublished); A. A. Tarasenko and A.
A. Chumak, Sov. Phys. Solid State 22, 1716 (1980); 24,
1683 (1982); A. Sadik and K. Binder, Surf. Sci. 128, 350
(1983); A. Natori and H. Ohtsubo, Surf. Sci. 171, 13
(1986); 184, 289 (1987).

[5] M. Kolb, T. Gobron, J.-F. Gouyet, and B. Sapoval, Euro-
phys. Lett. 11, 601 (1990).

[6] A. Hekkouri, M. Kolb, and J.-F. Gouyet (unpublished).

[71J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258



1710 J.-F. GOUYET 51

(1985); J. W. Cahn, ibid. 42, 93 (1965).

[8]J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase
Transitions and Critical Phenomena, edited by C. Domb
and J. L. Lebowitz (Academic, London, 1983), Vol. 8.

[9] R. Pandit and M. Wortis, Phys. Rev. B 25, 3226 (1982).

[10]J. F. Gouyet, Europhys. Lett. 21, 335 (1993). Note the fol-
lowing misprints in this paper: p. 339, u,=0(F)/dpy;
=potu,+[(z+s)/2]e, and in Eq. (16)

(F)=3 ¢k+§2<$apk )?
k a

[The introduction of a relation between the master equa-
tion and the Cahn-Hilliard equation was made by G.
Martin, Phys. Rev. B 41, 2279 (1990), treating a one-
dimensional case.]

[11] S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).

[12] A. Hekkouri, R. Nassif, M. Kolb, and J.-F. Gouyet (un-
published).

[13] At the interfaces between different ordered regions, the

variations will be indeed more important, but we always
suppose that the gradients remain much smaller than the
inverse lattice spacing.

[14] More exactly it becomes proportional to a Laplacian in
the continuous limit, with a coefficient of proportionality
which depends on the lattice structure.

[15] M. Nieswand, A. Majhofer, and W. Dieterich, Phys. Rev.
E 47, 718 (1993); 48, 2521 (1993); D. Reinel, W. Dieterich,
and M. Nieswand (unpublished).

[16] R. Fowler and E. A. Guggenheim, Statistical Thermo-
dynamics (Cambridge University Press, London, 1960).

[17] H. Sato and R. Kikuchi, J. Chem. Phys. 55, 677 (1971).

[18] K. R. Subbaswamy and G. D. Mahan, Phys. Rev. Lett. 37,
642 (1976).

[19] A. O. Gel'fond, Calculus of Finite Differences (Hindustan,
Delhi, 1971).

[20] P. Maugis and G. Martin, Phys. Rev. B 49, 11 580 (1994).

[21] G. Martin, Phys. Rev. B 50, 12 362 (1994).

[22] V. G. Vaks, S. V. Beiden, and V. Yu. Dobretsov (unpub-
lished).



